Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor.
نویسندگان
چکیده
The main physiological actions of the biologically most active metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)), are calcium and phosphorus uptake and transport and thereby controlling bone formation. Other emergent areas of 1α,25(OH)(2)D(3) action are in the control of immune functions, cellular growth and differentiation. All genomic actions of 1α,25(OH)(2)D(3) are mediated by the transcription factor vitamin D receptor (VDR) that has been the subject of intense study since the 1980's. Thus, vitamin D signaling primarily implies the molecular actions of the VDR. In this review, we present different perspectives on the VDR that incorporate its role as transcription factor and member of the nuclear receptor superfamily, its dynamic changes in genome-wide locations and DNA binding modes, its interaction with chromatin components and its primary protein-coding and non-protein coding target genes and finally how these aspects are united in regulatory networks. By comparing the actions of the VDR, a relatively well-understood and characterized protein, with those of other transcription factors, we aim to build a realistic positioning of vitamin D signaling in the context of other intracellular signaling systems.
منابع مشابه
The hormone-bound vitamin D receptor enhances the FBW7-dependent turnover of NF-κB subunits
Signaling by hormonal vitamin D, 1,25-dihydroxyvitamin D (1,25D) has attracted increasing interest because of its non-classical actions, particularly its putative anticancer properties and its role in controlling immune system function. Notably, the hormone-bound vitamin D receptor (VDR) suppresses signaling by pro-inflammatory NF-κB transcription factors, although the underlying mechanisms hav...
متن کاملThe Jak-Stat Signaling Pathway of Interferons System: Snapshots
Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...
متن کاملThe first genome-wide view of vitamin D receptor locations and their mechanistic implications.
The transcription factor vitamin D receptor (VDR) is the nuclear sensor for the biologically most active metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)). The physiological actions of the VDR and its ligand are not only the well-known regulation of calcium and phosphorus uptake and transport controlling bone formation, but also their significant involvement in the control...
متن کاملSelective interaction of vitamin D receptor with transcriptional coactivators by a vitamin D analog.
The nuclear vitamin D receptor (VDR) is a member of a nuclear receptor superfamily and acts as a ligand-dependent transcription factor. A family of cotranscriptional activators (SRC-1, TIF2, and AIB-1) interacts with and activates the transactivation function of nuclear receptors in a ligand-dependent way. We examined interaction of VDR with these coactivators that was induced by several vitami...
متن کاملVitamin D receptor as a master regulator of the c-MYC/MXD1 network.
Vitamin D signaling regulates cell proliferation and differentiation, and epidemiological data suggest that it functions as a cancer chemopreventive agent, although the underlying mechanisms are poorly understood. Vitamin D signaling can suppress expression of genes regulated by c-MYC, a transcription factor that controls epidermal differentiation and cell proliferation and whose activity is fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Steroids
دوره 78 2 شماره
صفحات -
تاریخ انتشار 2013